
NSW Education Standards Authority

Higher School Certificate
Course Specifications

Software Engineering

NESA acknowledges Traditional Owners and Custodians of Country throughout NSW, and pays respect to Elders
past and present. NESA recognises Aboriginal Peoples’ continuing Cultures and Connections to lands, waters, skies
and Community.

© 2023 NSW Education Standards Authority

The documents on the NSW Education Standards Authority (NESA) website and the NSW Curriculum website
contain material prepared by NESA for and on behalf of the Crown in right of the State of New South Wales.
The material is protected by Crown copyright.

These websites hold the only official and up-to-date versions of the documents available on the internet. Any
other copies of these documents, or parts of these documents, that may be found elsewhere on the internet
might not be current and are not authorised. You cannot rely on copies from any other source.

All rights are reserved. No part of the material may be:

 reproduced in Australia or in any other country by any process, electronic or otherwise, in any material
form

 transmitted to any other person or stored electronically in any form without the written permission of
NESA except as permitted by the Copyright Act 1968 (Cth).

When you access the material, you agree:

 to use the material for research or study, criticism or review, reporting news and parody or satire
 to use the material for information purposes only
 not to modify the material or any part of the material without the written permission of NESA
 to reproduce a single copy for personal bona fide study use only and not to reproduce any major extract

or the entire material without the permission of NESA
 to include this copyright notice in any copy made
 to acknowledge that NESA is the source of the material.

The documents may include third-party copyright material such as photos, diagrams, quotations, cartoons and
artworks. This material is protected by Australian and international copyright laws and may not be reproduced
or transmitted in any format without the copyright owner’s permission. Unauthorised reproduction, transmission
or commercial use of such copyright material may result in prosecution.

NESA has made all reasonable attempts to locate the owners of third-party copyright material. NESA invites
anyone from whom permission has not been sought to contact the Copyright Officer.

Special arrangements applying to the NSW Curriculum Reform

As part of the NSW Curriculum Reform process, NESA grants a limited non-exclusive licence to:

 teachers employed in NSW government schools and registered non-government schools
 parents of children registered for home schooling

to use, modify and adapt the NSW syllabuses for non-commercial educational use only. The adaptation
must not have the effect of bringing NESA into disrepute.

Note: The above arrangements do not apply to private/home tutoring companies, professional learning service
providers, publishers, and other organisations.

For more information on the above or for commercial use or any other purpose, please contact the
Copyright Officer for permission.

Email: copyright@nesa.nsw.edu.au

D2022/521381

Table of Contents

System and Data Modelling Tools .. 5

Data flow diagrams .. 5

Structure charts ... 7

Data dictionary ... 8

Class diagrams .. 9

Storyboard ... 9

Decision trees .. 10

Project Management Tools ... 11

Gantt charts ... 11

Process diaries / log books .. 12

Programming Paradigms .. 13

Object-oriented paradigm .. 13

Logic paradigm .. 13

Imperative paradigm .. 13

Functional paradigm .. 13

Algorithms .. 14

Pseudocode ... 14

Flowcharts ... 14

Control Structures ... 15

Sequence .. 15

Selection .. 15

Binary selection .. 15

Multi-way selection ... 16

Nested IF .. 16

Repetition... 17

Pre-test ... 17

Post-test ... 17

FOR / NEXT ... 18

Subroutines .. 19

Using a subroutine with one parameter ... 19

Using a subroutine with multiple parameters ... 20

Passing a value back from a function .. 21

Relational Databases ... 22

SQL ... 22

Object-Relational Mapping (ORM) .. 23

Wiring diagrams for mechatronic systems ... 24

Programming for the Web ... 25

Front-end web development frameworks .. 25

Cross-site scripting .. 25

Cascading Style Sheets (CSS) ... 26

Machine Learning .. 27

Machine learning automation through DevOps ... 27

Regression algorithms ... 28

Neural Networks .. 29

Training cycle ... 29

Execution cycle... 29

Methods for Testing a System .. 30

Character Representation ... 31

Programming with Python .. 32

Higher School Certificate Course Specifications – Software Engineering, updated March 2023 Page 5 of 32

Introduction

Software Engineering Course Specifications are an integral part of the course content for Year 11 and Year 12
and indicate the depth of study required for some concepts in the Software Engineering 11–12 Syllabus. The
Software Engineering 11–12 Syllabus must be applied in conjunction with the Software Engineering Course
Specifications.

System and Data Modelling Tools

Data flow diagrams

Symbols

A circle represents a process. A process uses input(s) to generate output(s).

A data store can be an electronic file or non-computer storage.

An external entity can be any person, organisation or element that provides data to
the system or receives data from the system.

A labelled, curved arrow represents the flow of data between processes, data stores
and external entities.

The following data flow diagram models a voting system.

Higher School Certificate Course Specifications – Software Engineering, updated March 2023 Page 6 of 32

Level 0 data flow diagram

Level 0 data flow diagrams represent an overview of the entire system and do not show data stores or internal
processes. The following represents a Level 0 data flow diagram for the voting system.

Higher School Certificate Course Specifications – Software Engineering, updated March 2023 Page 7 of 32

Structure charts

Structure charts represent a system by showing the separate subroutines that make up the system and their
relationship to each other.

Symbols

An empty circle is used to indicate data movement between subroutines (usually passed as
parameters).

A filled circle is used to indicate a flag or control variable that is passed between subroutines.

A decision (ie optional execution of a subroutine) is indicated by use of a small diamond at the
intersection of the connecting lines between subroutines that are called as the result of a binary or
multi-way selection. Alternatively, the diamond may appear on a single connecting line if calling
that subroutine is optional. In the diagram shown, a report may not necessarily be produced each
time a book is returned.

Repetition (execution of a particular subroutine or set of subroutines multiple times) is shown by a
curved arrow.

The following structure chart represents a library system.

Further detail for each of the lower-level subroutines can be shown in a separate structure chart, using the
same name as the subroutine used in the main structure chart.

This method of providing successively more detail as required is known as refinement.

Higher School Certificate Course Specifications – Software Engineering, updated March 2023 Page 8 of 32

Data dictionary

A data dictionary provides a comprehensive description of each variable stored or referred to in a system. This
commonly includes variable name, data type, format, size in bytes, number of characters to display the item
including number of decimal places (if applicable), the purpose of each variable and a relevant example. Any
validation rules applicable to the data item can also be included.

Details of records or arrays of records can be included in data dictionaries.

An extract of a data dictionary is shown.

Variable Data type Format for
display

Size in
bytes

Size for
display

Description Example Validation

UserId String XXNNN 5 5 A primary
key, uniquely
identifies
user. First
2 letters
of surname
followed by
unique 3-digit
identifier

PT173 First 2
characters
letters, followed
by last 3
characters digits

UserName String XX..XX 15 15 Username
of employee

Kim First letter is a
capital letter

DOB Date and
Time

YYYY/MM/DD 4 10 Birth date of
employee

1953/10/05 Valid date less
than today

Times_Late Integer NNN 2 3 Number of
times late to
work this
year

147 Integer between
0 and 999

PayRate Floating
Point

$NNN.NN 4 7 Hourly rate
of pay

$124.37 Decimal greater
than 20, less
than 400

SocialClub Boolean X 1 bit 1 Y or N N

Departments Array
(string)

 20 * number
of
departments

N/A Names of
departments
in
organisation

Administration
Finance
Marketing

From a drop-
down list

Note: a date and time data type is always stored as 32 bits (4 bytes) and can be displayed using different
formats such as DD/MM/YYYY hh:mm:ss or YYYY/MM/DD

Higher School Certificate Course Specifications – Software Engineering, updated March 2023 Page 9 of 32

Class diagrams

Class diagrams provide a visual representation of systems that are implemented using the object-oriented
paradigm. They model classes, their attributes and methods, and the relationships between classes.

Symbols

The following is an example of a class diagram.

Note: Both Student and Parent inherit from Person. There is a relationship between Student and Subject. A
student must study 1 or more subjects. A subject can have 0 or more students enrolled.

Storyboard

A storyboard shows the various interfaces (screens) as well as the links between them.

The following storyboard shows the relationship between three pages of information aimed at promoting a
school canteen on a website.

Higher School Certificate Course Specifications – Software Engineering, updated March 2023 Page 10 of 32

Decision trees

A decision tree is a diagram that represents all possible combinations of decisions and their resulting actions.
Branches are shown to describe the eventual action depending on the condition at the time. Each decision path
will lead to either another decision or a final action.

The following decision tree shows the rules in controlling the temperature system within a ‘smart’ house.

The following diagram shows another way to represent a decision tree.

Higher School Certificate Course Specifications – Software Engineering, updated March 2023 Page 11 of 32

Project Management Tools

Gantt charts

A Gantt chart displays each of the component tasks in a proposed system development on an estimated
timeline. Tasks should be named with self-explanatory titles. The estimated time required for each task and its
dependent tasks should be clearly shown. The time scale should be clearly indicated with dates and important
milestones in the project clearly marked.

The following diagram shows the main elements of a Gantt chart. Other formats are acceptable.

Gantt charts can also be used to allocate resources, including team members, to specific tasks. The following
chart shows the percentage completion of tasks by each team member. Charts should be regularly updated
during development to reflect actual versus estimated times for tasks.

Higher School Certificate Course Specifications – Software Engineering, updated March 2023 Page 12 of 32

Process diaries / log books

Process diaries / log books are used to document the progress of a project. Entries made by team members at
regular intervals should include:

 date

 person making the entry

 progress since the last entry

 tasks achieved

 stumbling blocks or issues encountered and how they were managed

 possible approaches for upcoming tasks

 reflective comments

 resources used.

Higher School Certificate Course Specifications – Software Engineering, updated March 2023 Page 13 of 32

Programming Paradigms

Object-oriented paradigm

Students should know how to:

 define classes, objects, attributes and methods

 make use of inheritance, polymorphism and encapsulation

 perform message passing

 use control structures and variables.

Logic paradigm

Students should know how to:

 define and edit facts

 create, edit and remove rules

 display the solution and the rules that the system used.

Imperative paradigm

Students should know how to:

 use control structures and variables

 use assignment statements

 use expressions

 use subroutines.

Functional paradigm

Students should know how to:

 call functions and use recursion

 use functions as first-class objects and collections

 use abstraction, encapsulation, inheritance and polymorphism.

Note: Students should know how to use appropriate data structures for each of the paradigms.

Higher School Certificate Course Specifications – Software Engineering, updated March 2023 Page 14 of 32

Algorithms

It is expected that students are able to develop and interpret algorithms represented as pseudocode and
flowcharts.

It is important to start complex algorithms with a clear, uncluttered mainline. The mainline should reference
required subroutines, the details of which are shown in separate algorithms.

Each subroutine should be concise and correctly make use of further subroutines for detailed logic.

Pseudocode

Pseudocode is a method of describing the logic in an algorithm. It makes use of capitalised keywords and
indentation to show control structures used.

In pseudocode:

 keywords are written in capitals

 structural elements come in pairs, eg for every BEGIN there is an END, for every IF there is an ENDIF

 indenting is used to identify control structures in the algorithm

 when refining the solution to a problem, a subroutine can be referred to in an algorithm by its name, with a
separate subroutine developed with that same name to show the detailed logic.

Flowcharts

Flowcharts are diagrams that represent algorithms and are read from top to bottom and left to right.

Symbols

Flowcharts use the following symbols connected by lines with arrowheads to indicate the flow of data. It is
common practice to show arrowheads to avoid ambiguity.

Flowcharts using these symbols should be developed using only the standard control structures (as described
in the following section, Control Structures).

Higher School Certificate Course Specifications – Software Engineering, updated March 2023 Page 15 of 32

Control Structures

Algorithms are developed using the basic control structures of sequence, selection and repetition. Students are
expected to design algorithms and write code incorporating combinations of these control structures.

Sequence

Sequence refers to steps which are to be executed one after the other. The steps are executed in the same
order in which they are written.

Pseudocode

process 1

process 2

…

…

process n

Flowchart

Selection

Binary selection

In binary selection, if the condition is met then one path is taken, otherwise the second possible path is
followed.

Pseudocode

1. IF condition THEN

 process 1

ENDIF

2. IF condition THEN

 process 2

 ELSE

 process 1

 ENDIF

Flowchart

 Note: Arrows coming from a decision symbol should be labelled to remove ambiguity.

Higher School Certificate Course Specifications – Software Engineering, updated March 2023 Page 16 of 32

Multi-way selection

In multi-way selection there can be a number of possible choices, or cases. The path taken is determined by
the evaluation of the expression. Once a relevant path has been determined and executed, execution of this
expression ceases. Only one process is executed as a result of the implementation of the multi-way selection.

Multi-way selection is often referred to as a case structure.

Pseudocode

CASEWHERE expression evaluates to

 choice a: process a

 choice b: process b

 …

 OTHERWISE: default process

END CASE

Flowchart

Nested IF

 A nested IF allows the testing of multiple conditions with only one process executed.

Pseudocode

IF condition A THEN

process 1

ELSEIF condition B THEN

process 2

ELSEIF condition C THEN

process 3

ELSE

process 4

ENDIF

Flowchart

Higher School Certificate Course Specifications – Software Engineering, updated March 2023 Page 17 of 32

Repetition

Pre-test

The pre-test loop tests the condition at the start of the loop to determine whether the body of the loop is
executed. The body of the loop is executed repeatedly while the termination condition is true.

Pseudocode

WHILE condition is true

process

ENDWHILE

Flowchart

Post-test

A post-test loop executes the body of the loop before testing the termination condition. The body of the loop is
repeatedly executed until the termination condition is true.

Pseudocode

REPEAT

process

UNTIL condition is true

Flowchart

Higher School Certificate Course Specifications – Software Engineering, updated March 2023 Page 18 of 32

FOR / NEXT

FOR / NEXT loops (also known as counted loops) can be regarded as special cases of repetition and,
depending on the language, are implemented as either pre-test or post-test repetitions.

Pseudocode

FOR variable = start TO finish STEP increment

statements

NEXT variable

Flowchart

Note: Increment can take either a positive or negative value.

Higher School Certificate Course Specifications – Software Engineering, updated March 2023 Page 19 of 32

Subroutines

The terms subroutine, module, subprogram and procedure can be used interchangeably to represent a
collection of statements that achieve a specific purpose.

A subroutine can do the same task at different points in an algorithm. It may operate on different data each time
it is called. One or more parameters are used to indicate the data to be processed.

A function is a particular type of subroutine that returns a single value.

Using a subroutine with one parameter

The following algorithms represent the logic required to fill an array with characters.

The subroutine read uses a single parameter arrayname that can take different values.

The first time that this subroutine is called, the data is read and stored in the array called ‘name’. The second
time, the data is read and stored in the array called ‘address’.

Pseudocode

BEGIN

read (name)

read (address)

END

BEGIN read (arrayname)

Set pointer to first position

Get a character

WHILE more data AND space in array

Store data in arrayname at the

position given by the pointer

Increment the pointer

Get next character

ENDWHILE

END read (arrayname)

 Flowcharts

Higher School Certificate Course Specifications – Software Engineering, updated March 2023 Page 20 of 32

Using a subroutine with multiple parameters

The following algorithms represent the logic required to display the sum of two consecutive integers, where the
smaller integer takes all possible values from 1 to 5. The subroutine Add uses three parameters, x, y and total.

Pseudocode

BEGIN AddNumbers

 FOR i = 1 to 5

 Add (i, i + 1, sum)

 Display sum

 NEXT i

END AddNumbers

BEGIN Add (x, y, total)

 total = x + y

END Add (x, y, total)

Flowcharts

Higher School Certificate Course Specifications – Software Engineering, updated March 2023 Page 21 of 32

Passing a value back from a function

A function generates a single value. The word RETURN is used to pass this single value back from the
function.

The algorithm Addnumbers uses the function Add to calculate the sum of two consecutive integers where the
smaller integer takes all possible values from 1 to 5. In this case the function requires two parameters.

Pseudocode

BEGIN Addnumbers

 FOR i = 1 to 5

 Display Add (i, i + 1)

 NEXT i

END Addnumbers

BEGIN Add (x, y)

 total = x + y

 RETURN total

END Add (x, y)

Flowcharts

Higher School Certificate Course Specifications – Software Engineering, updated March 2023 Page 22 of 32

Relational Databases

SQL

Structured Query Language (SQL) is a language used to access and manipulate data in relational databases.

For the HSC Software Engineering course, the following syntax is used.

SELECT the field(s) or calculated values to be displayed
FROM the table(s) to be used
WHERE the search criteria
GROUP BY the field(s) used to group the returned rows
ORDER BY the field(s) that determine the sequence of the displayed results

The keyword AS may be used within a SELECT statement to rename fields for display.

The search criteria may use relational operators, including the following.

 CONTAINS
 DOES NOT CONTAIN
 EQUALS
 NOT EQUAL TO
 GREATER THAN
 GREATER THAN OR EQUAL TO
 LESS THAN
 LESS THAN OR EQUAL TO

Logical operators that may be used include the following.

 AND
 OR
 NOT

If the GROUP BY clause is used, it is useful to include in the SELECT statement details of the value to be
calculated. The following functions may be used.

SUM (attribute)
AVG (attribute)
COUNT (attribute)
MAX (attribute)
MIN (attribute)

If the ORDER BY clause is used, the field and method should be specified. The methods used are typically
identified by ASC (ascending: A – Z or 0 – 9) or DEC (descending: Z – A or 9 – 0).

Higher School Certificate Course Specifications – Software Engineering, updated March 2023 Page 23 of 32

Three tables from a relational database are shown.

The following query displays the name and release date of all games released from 1 March 2022 to 31 March
2023. The results will be displayed in ascending alphabetical order by game name.

SELECT Name, Release_date

FROM Games

WHERE Release_date >= ‘01/03/2022’ AND Release_date <= ‘31/03/2023’

ORDER BY Name ASC

The following query displays each developer, together with the total cost of games they have developed for the
publisher ‘Games Inc’, listed in descending order of developer name.

SELECT Developers.First_name, Developers.Last_name, SUM (Games.cost) AS Totalcost
FROM Games, Publishers, Developers
WHERE Publishers.Name = ‘Games Inc’
AND Publishers.Publisher_ID = Games.Publisher_ID
AND Developers.Developer_ID = Games.Developer_ID
GROUP BY Developers.Developer_ID
ORDER BY Developers.Last_name DESC

Object-Relational Mapping (ORM)

ORM (Object-Relational Mapping) provides a layer of abstraction between the database and the programming
language which the developer is using. In an object-oriented language, an ORM will usually be able to
represent database items (rows) as objects in that chosen language and the attributes of that item (columns) as
properties of the object. Students are expected to interpret code fragments used in an ORM framework.

Higher School Certificate Course Specifications – Software Engineering, updated March 2023 Page 24 of 32

Wiring diagrams for mechatronic systems

Mechatronic systems can range in complexity and can be represented using the following symbols.

Name Symbol Name Symbol

Capacitor

 LED

Diode

 Lightbulb

Resistor

 Integrated
circuit

2-way
Switch

 Voltage
source

On/off
Switch

 DC
Voltage
Source

Speaker

 DC
Voltage
source

Motor

 Amplifier

If a wiring diagram requires other electrical components, the components must be clearly labelled for
identification.

Higher School Certificate Course Specifications – Software Engineering, updated March 2023 Page 25 of 32

Programming for the Web

Front-end web development frameworks

There are numerous front-end web development frameworks which provide different features and benefits.
Students should understand why such frameworks are useful in front-end web development

Students are not expected to have knowledge of a specific framework nor are they expected to code using any
specific framework.

Cross-site scripting

Cross-site scripting (XSS) involves injecting malicious code into an otherwise safe website. It is usually done
through user input that is not sufficiently sanitised before being processed and stored on the server.

Students should be able to interpret fragments of JavaScript related to cross-site scripting.

Higher School Certificate Course Specifications – Software Engineering, updated March 2023 Page 26 of 32

Cascading Style Sheets (CSS)

Cascading style sheets (CSS) are used to describe the formatting of web pages. Students are expected to
interpret code fragments written in CSS and HTML. The following syntax is used.

/* Comment */

selector {

 property: value;

}

 Comments: can be specified anywhere in CSS and are enclosed in /* and */

 Selector: targets a particular HTML element on the page to which the styling within the braces should be
applied

 Property: a styling property, such as color

 Value: the value of the styling property, such as red

The following HTML fragment shows the CSS to style a webpage.

<html>

 <head><title>My Website</title></head>

 <body>

 <h1>Welcome!</h1>

 <p id=”welcome”>Welcome to my website!</p>

 <p class=”red‐text”>This text should be red</p>

 <p>My website also has red text here</p>

 </body>

</html>

The CSS to style that page is as follows.

/* This selector targets an HTML element */

h1 {

 font‐size: 18px;

}

/* This selector targets an HTML element with a specific “id” */

#welcome {

 font‐style: italic;

}

/* This selector targets an HTML element with a specific “class” */

.red‐text {

 color: red;

}

Higher School Certificate Course Specifications – Software Engineering, updated March 2023 Page 27 of 32

Machine Learning

Machine learning automation through DevOps

MLOps is the automated process of designing, training and deploying machine learning models. It borrows
many of the same principles and practices used in DevOps, bringing together the teams involved in developing
machine learning models and the operational teams involved in deploying and supporting the models in
production.

Students should know the three stages of MLOps.

 Design:

 defining the business problem to be solved
 refactoring the business problem into a machine learning problem
 defining success metrics
 researching available data.

 Model development:

 data wrangling
 feature engineering
 model training
 model testing and validation.

 Operations:

 model deployment
 supporting operations/use
 monitoring model performance.

Higher School Certificate Course Specifications – Software Engineering, updated March 2023 Page 28 of 32

Regression algorithms

Linear regression and polynomial regression algorithms are used to predict values in a continuous range, such
as integers. These regression algorithms are used for machine learning.

Logistic regression is used for classification problems.

Students should know how to design programs which use and apply these algorithms but are not expected to
implement (or code) these complex algorithms.

The following Python code represents linear regression using NumPy and Scikit-learn machine learning
frameworks.

Import frameworks

import numpy

from sklearn.linear_model import LinearRegression

Create the data for the two features

x = np.array([[2], [4], [6], [8], [10], [12], [14], [16]])

y = np.array([1, 3, 5, 7, 9, 11, 13, 15])

Create the model

model = LinearRegression()

Fit the model to the data (that is determine the line of best fit through the data)

model.fit(x, y)

We can now use the model for predictions with existing or new data

The model expects a value for x and will predict a value for y – so if we asked for a

prediction on 4 it would return 3 (as that is known data).

y_prediction = model.predict(4)

>> 3

If we asked for a prediction of 4.5 it should return 3.5 (even though that is unknown

data we can tell what it should return, given there is a linear relationship)

y_prediction = model.predict(4.5)

>> 3.5

Higher School Certificate Course Specifications – Software Engineering, updated March 2023 Page 29 of 32

Neural Networks

Neural networks were designed to mimic the processing inside the human brain. They consist of a series of
interconnected nodes (artificial neurones). Each neurone can accept a binary input signal and potentially output
another signal to connected nodes.

Training cycle

Internal weightings and threshold values for each node are determined in the initial training cycle for each
neural network. The system is exposed to a series of inputs with known responses. Linear regression with
backward chaining is used to iteratively determine the set of unique values required for output. Regular
exposure to the training cycle results in improved accuracy and pattern matching.

Execution cycle

In the diagram, signal strength between nodes with the strongest weightings are thicker representing a higher
priority in determining the final output. The execution cycle follows the training cycle and utilises the internal
values developed during the training cycle to determine the output.

Higher School Certificate Course Specifications – Software Engineering, updated March 2023 Page 30 of 32

Methods for Testing a System

Students are expected to know and understand the following methods for testing a software solution.

 functional testing

 acceptance testing

 live data

 simulated data

 beta testing

 volume testing.

Higher School Certificate Course Specifications – Software Engineering, updated March 2023 Page 31 of 32

Character Representation

Characters can be represented with ASCII or Unicode. When a developer is working with text strings, they can
make use of how the text data is stored internally in its binary format to perform functions such as changing the
case of letters in the string, or performing a simple encryption.

Higher School Certificate Course Specifications – Software Engineering, updated March 2023 Page 32 of 32

Programming with Python

Students are expected to be able to code using the Python programming language.

Students should be familiar with the use of the following features:

 control structures

 global and local variables

 use of simple and structured data types

 classes, objects, attributes and methods

 functions

 modules and libraries

 file handling

Students are expected to design and implement programs incorporating combinations of these features.

